

university ofzernike institutegroningenfor advanced materials

30-fs Hole-Transfer Dynamics in **Polymer/PCBM** Bulk Heterojunction

Maxim S. Pshenichnikov

Vladivostok, 5 October 2010

Гронинген – Амстердам – Москва - Владивосток

9000 км

Благодарности

Александр Александрович Саранин Ольга Владимировна Бехтерева Фонд «Династия» deral Agency for Science, and Innovations, Russia (grant: 02, 740.11.5155)

∆инастия

«Нет ничего превыше Гронингена» "Er gaat niets boven Groningen"

University of Groningen

Groningen: 170,000 people Old, youthful, safe, cultural University is founded in 1614 25000 students 6000 staff

Zernike Institute for Advanced Materials

Frits Zernike (1888-1966)

Professor of Theoretical Physics, University of Groningen Nobel Prize in Physics in 1953 for developing phase contrast microscopy

Zernike Institute for Advanced Materials

- Growing complexity ("smart materials")
- Miniaturisation: nanoscience
- Multidisciplinary approach for breakthroughs
- Focus on curiosity driven research; open eye for technological applications

- National Research Center since 1999

- Impact: above twice world average in the field

Top institutions in materials science

11 March 2010

Data provided by Thomson Reuters from its Essential Science Indicators database, January 1999-October 2009

	Institution	Papers	Citations	Citations per paper
1	Rice University	381	11,949	31.36
2	Harvard University	596	16,467	27.63
3	University of California, Santa Barbara	964	25,376	26.32
4	University of Washington	822	21,348	25,97
5	IBM Corporation	573	13,822	24.12
6	University of California, Berkeley	1,354	29,963	22.13
7	University of Southern California	552	11,548	20,92
8	Massachusetts Institute of Technology	1,654	34,017	20.57
9	University of Groningen	524	10,547	20.13
10	Princeton University	514	10,085	19.62
11	Stanford University	728	13,853	19.03
12	University of Minnesota	662	11,786	17.80
13	Max Planck Society	3,506	54,175	15.45

Topmaster Program in Nanoscience

groningen

and nature

atural sciences

Graduate Programme

in Nanoscience

Top Master Programme in Nanoscience PhD Programme in Nanoscience

1

Organized by the Zamike Institute for Advanced Materials

- Two-year MSc study, aims at future PhD's
- Interdisciplinary: physics and chemistry
- International
 - * Courses in English
 - * Selection of top candidates worldwide
- Close contacts with leading experts in the field
- Scholarships !!!
- Graduates pursue scientific career all over the world

Overview of Current Activities

Water at (bio)interfaces

Single-molecule superresolution microscopy

Ultrafast spectroscopy

Energy and charge dynamics at photovoltaics interfaces

university ofzernike institutegroningenfor advanced materials

30-fs Hole-Transfer Dynamics in Polymer/PCBM Bulk Heterojunction

Maxim S. Pshenichnikov

Artem A. Bakulin (Cambridge U) Almis Serbenta Jan C. Hummelen **Paul H.M. van Loosdrecht**

Vladivostok, 5 October 2010

Polymer Solar Cells

 Reason to develop solar cells

Oil prices, energy consumption, ecology

 Reason to develop *plastic* solar cells

They can be cheap: printing technology

• Reason to develop plastic solar cells Efficiency is the issue

Polymer Solar Cells

• Rea A Konarka Power Plastic* 4W Module Oil pr Rea s Loster, 2006 10% (2010) We Heeger 6.5% (2007) <u>They</u> 3% (1992) Heeger Rea

Efficiency is the issue

Nature Materials 6, 3 (2007)

Brabec, Sariciftci, Hummelen, AFM 11, 15 (2001)

Brabec, Sariciftci, Hummelen, AFM 11, 15 (2001)

Bulk-Heterojunction Concept

Brabec, Sariciftci, Hummelen, AFM 11, 15

Donor Excitation and Electron Transfer

Why Going Nonlinear?

Charge dynamics studies on polymer/fullerene mixtures <u>Electron transfer</u>

- Vardeny (ps-fs broad band probe studies)
- Heeger (100 fs VAIR, sub-ps NIR spectroscopy)
- Sariciftci (5 fs resolution ET <u>45 fs ET time</u>)
- Friend (100 fs exciton and charge dynamics)
- Sundstrom (low flux spectroscopy)
- Janssen (ET in diads, copolymers &...)
- Many, many more

Dynamics of charges after the polymer excitation:

- Exciton diffusion in polymer (up to 200 ps, ~10 nm)
- Photoinduced electron transfer 45 fs

Geminate recombination of charges (10's ps)

Acceptor Excitation and Hole Transfer

Fullerene accounts for 50-80% of the solar cell active layer

Significance of PCBM Excitation

For modern materials, fullerene absorption amounts to 30-40%!

Charge dynamics studies on polymer/fullerene mixtures

Electron transfer

Hole transfer

- Vardeny (ps-fs broad band probe studies)
- Heeger (100 fs VAIR, sub-ps NIR spectroscopy)
- Sariciftci (5 fs resolution ET <u>45 fs ET time</u>)
- Friend (100 fs exciton and charge dynamics)
- Sundstrom (low flux spectroscopy)
- Janssen (ET in diads, copolymers &...)
- Many, many more

Dynamics of charges after the polymer excitation:

- Exciton diffusion in polymer (up to 200 ps, ~10 nm)
- Photoinduced electron transfer 45 fs
- Geminate recombination of charges (10's ps)

- Wienk et al, 2003 (C₇₀PCBM/PPV, 0.5 ps resolution)
- Cook et al, 2009 (PCBM/P3HT, 0.2 ps resolution)

The questions to answer

In the blends of polymer (MDMO-PPV) and fullerene (PCBM):

• What is the Hole-Transfer time?

• What are dynamics of PCBM exciton-tocharge conversion?

D53313

www.afm-journal.de

ADVANCED FUNCIONAL MATERIALS

Exciton

Charges on PPV

The cover story:

The active layer of the currently most efficient plastic photovoltaic cells is a blend of polymer and methanofullerene molecules. In their article M.S. Pshenichnikov et al. show that hole transfer upon methanofullerene excitation operates simultaneously with electron transfer as the charge generation process in plastic photovoltaics, at a staggering timescale of 30 fs.

AFM 20, 1653–1660 (2010)

WILEY-VCH

How to Excite Selectively PCBM?

Spectral selectivity!

Linear absorption experiments

CW PIA photoexcitation

Maximum contrast of PCBM excitation is provided by 620-650 nm pump

Linear Absorption Spectra

Sample preparation:

Drop-casting from chlorobenzene solution of PCBM and MDMO PPV on 180-µm thick fused silica microscope cover slides sample thickness ~300 nm

Linear Absorption Spectra

Heeger 92, 99; Vardeny 96, 03

Optical Signatures of Charges

 Photo-Induced Absorption (PIA) is an excellent probe for concentration of charges

Bakulin et al., JPC B112, 13730 (2008)

Optical Signatures of Charges

- Photo-Induced Absorption (PIA) is an excellent probe for concentration of charges
- Low-energy (LE) peal allows background-free measurements

Bakulin et al., JPC B112, 13730 (2008)

The Instrument –

Photocamera

The Instrument – Ultrafast Photocamera

- Excite spectral-selectively PCBM
- Watch for arrival of the hole to PPV
- Hole arrival should be delayed by:
 - hole-transfer time (low % PCBM)
 - exciton diffusion time (high % PCBM)

Experimental Transients

Results I. Hole-Transfer Time

Results I. Hole-Transfer Time

Results I. Hole-Transfer Time

Results II. PIA Amplitudes

Results II. PIA Amplitudes

Results II. PIA Amplitudes

Results II. PIA Amplitudes

Microscopic Picture of Charge Dynamics

Microscopic Picture of Charge Dynamics

From Cartoons to AFM Images

Spatial correlation analysis: $\varphi(a,b) = \iint f(x,y) \cdot f(x+a,y+b) \cdot dxdy$

Phase Separation and Charge Generation

Correlation between the amount of charges and domain size

Conclusions

- Hole transfer time of ~30 fs
- ... is very close to the electron-transfer time of 45 fs
- ...so the two processes very efficient
- ... and act literally in concert !
- Blend morphology strongly influences the hole transfer process
- PCBM domain size of 10 nm seems the largest for the efficiency
- ...more experiments to come!